

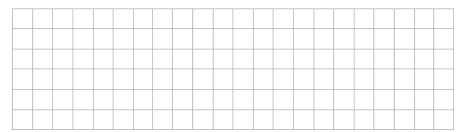
Snellius'sches Brechungsgesetz

Name			
Datum			

Ein ins Wasser gehaltenes Lineal erscheint an der Eintauchstelle geknickt. Dafür ist die Brechung des Lichts verantwortlich, die in diesem Experiment untersucht wird.

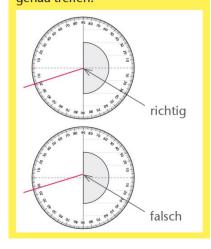
Durchführung/Messung:

⇒ Baue den Versuch wie abgebildet auf.



- lacktriangle Beschrifte in der rechten Abbildung den Einfallswinkel α , den Brechungswinkel β und das Lot.
- ➡ Miss für mindestens 6 verschiedene Einfallswinkel die zugehörigen Brechungswinkel. Trage die Ergebnisse in die Messwerttabelle ein.

Einfallswinkel α			
Brechungswinkel $oldsymbol{eta}$			
$sin(\alpha) / sin(\beta)$			


Auswertung:

- 1. Berechne für jedes Messwertepaar den Quotienten $\sin(\alpha)$ / $\sin(\beta)$ und trage die Werte in die dritte Zeile der Messwertetabelle ein.
- 2. Berechne den Mittelwert der Quotienten.

- 3. Untersuche, inwieweit sich dieser Quotient auch aus den Lichtgeschwindigkeiten von Luft und Glas ergibt.
- 4. Das Snellius'sche Brechungsgesetz verknüpft die Sinusse von Einfallswinkel und Brechungswinkel mit den Lichtgeschwindigkeiten im jeweiligen Stoff. Formuliere mit deinem Ergebnis aus Aufgabe 3 dieses Gesetz als Formel.

Beachte beim Messen Der Laser muss den Lotfußpunkt genau treffen.

Tabelle Lichtgeschwindigkeit c

Stoff	c in km/s			
Luft	299711			
Wasser	225000			
Diamant	125000			
Glas	190000			
Speiseöl	203000			
Vakuum	299792			